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Abstract This paper extends the methodology for the construction of odd polyhedral
links. Building blocks are odd chain tangles, each of which consists of finitely many
2n + 1-twist tangles for any nonnegative integer n. For any polyhedral graph G,
replacing each edge with an odd chain tangle results in an infinite collection of odd
polyhedral links. The relationship between the HOMFLY polynomials of these odd
links and the Qd -polynomial of G is established. It leads to the determination of the
span of the HOMFLY polynomial, the bound on the braid index and the genus of each
odd link. Our results show that these indices depend not only on the building blocks
but also on the graph G.

Keywords Polyhedral links · HOMFLY polynomial · Dichromatic polynomial ·
Braid index · Genus

1 Introduction

Knots and links are significant structural features in DNA [1–6]. They, together with
slipknots, are also gradually recognized in some proteins [7–9] and play an important
role in the chemical and physical properties of both natural and synthetic compounds
[10–14]. To date, a wide variety of molecules with topological characteristics [15–27],
such as trefoil knots [15–18], composite knots [17], Hopf links [19,20] and Bor-
romean rings [21,22], have been synthesized in the laboratory. Among these interesting
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topological molecules, Polyhedral catenanes [23–27] assembled based on the remark-
able programmability and flexibility of DNA, are the interlocked and interlinked archi-
tectures and have received a great deal of attention. In recent reports, the building
blocks consisting of DNA star-shaped motifs have led to the highly complex topology
of these 3D nanostructure [28–32]. In these newly assembled objects, each edge is
composed of two DNA duplexes instead of the originally double-helical DNA, and
each face forms a big hole by the intersection of the edges. These facts encourage us
to employ some new methods for the construction of polyhedral links with two DNA
duplexes, thereby enriching and broadening the original assembly strategy.

Knot theory [33], the study of simple closed curves in Euclidean 3-space (R3), has
been proven to be effective in describing knotted and linked molecules [34,35]. In
particular, some knot invariants such as linking number, component number, Jones
polynomial, the HOMFLY polynomial, genus and braid index have been used to
characterize polyhedral links [36–47]. The HOMFLY polynomial [48,49] is a powerful
invariant of oriented links, which generalizes the Alexander–Conway polynomial and
the Jones polynomial. Furthermore, it is closely related to the genera and braid indices
of oriented links [50–53], which play significant roles in classifying and ordering
molecular catenanes [54,55]. However, the calculation of the HOMFLY polynomial
is believed to be NP-hard [56,57], and the other two invariants are also difficult to obtain
in general. Therefore, we need an effective method to simplify their calculation.

Odd polyhedral links are defined initially by using 2n + 1-twist tangle [2n + 1]
in Refs. [40,41] (Fig. 1a). Their HOMFLY polynomials are difficult to compute, due
to each edge (i.e. a 2n + 1-twist tangle) having an unpredictable orientation. In the
present paper, odd chain tangles are used as building blocks, each of which consists
of finitely many 2ni + 1-twist tangles (Fig. 2a). These odd tangles not only increase
the complexity of the previous ones but also have a determined orientation. Therefore
for any polyhedral graph G, replacing each edge e with an odd chain tangle Tke will
result in infinitely many oriented odd polyhedral links. We show that the HOMFLY
polynomials of these odd links can be obtained by using the Qd -polynomial of the
polyhedral graph G. Furthermore, the spanv of the HOMFLY polynomial, the upper
and lower bounds on the braid index and the genus of each odd link are all determined
in this paper. Our results are expected to provide a theoretical rule on the design and
synthesis of the complex structure of polyhedral catenanes.

2 The construction of odd polyhedral links

In this section, we begin by introducing some notation and basic definitions.
In graph theory, a planar graph G is a graph that can be drawn in the plane with no

edge crossings. Such a drawing is called a plane graph of G. In particular, all convex
polyhedrons are 3-connected planar graphs [58], and a plane graph of a polyhedron is
also called a polyhedral graph. Hence in this paper, the graphs we considered are all
plane graphs, including polyhedral graphs as special cases.

A n-twist tangle, denoted by [n], consists of two parallel strands with n half-twists,
where n is any nonnegative integer. Two tangles [0] and [3] are shown in Fig. 1a. The
Denominator of a 2-tangle T , denoted by T , is obtained by joining with simple arcs
each pair of the corresponding top and bottom endpoints of T , as shown in Fig. 1b.
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Fig. 1 a Two tangles [0] and [3]; b 2-tangle T and its Denominator T

T(1,0;1,0)T(1,1;1,1)
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2n2k+1
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Fig. 2 a A general form of Tk ; b an odd chain tangle T (1, 1; 1, 1) and a 2-tangle T (1, 0; 1, 0) obtained
from it

An odd chain tangle, denoted by Tk = T (2n1 + 1, 2n1 + 1; 2n2 + 1, 2n2 +
1; . . . ; 2n2k + 1, 2n2k + 1), is a special oriented 2-tangle shown in Fig. 2a, where
each box 2ni + 1 denotes a 2ni + 1-twist tangle for 1 ≤ i ≤ 2k ≥ 2. In particular, if a
box 2ni + 1 is replaced by the 0-twist tangle, the resulting link is denoted by the cor-
responding notation. For example in Fig. 2b, the 2-tangle obtained from T (1, 1; 1, 1)

by replacing two 1-twist tangles with two 0-twist tangles is denoted by T (1, 0; 1, 0).
In addition for 1 ≤ i ≤ 2k, we denote by T (2ni + 1, 2ni + 1) the corresponding
2-tangle in Tk . In Fig. 2a, T (2n1 + 1; 2n1 + 1) is the 2-tangle bounded by two dotted
lines.

Now we will use odd chain tangles as building blocks for the construction of oriented
links. This can be described as follows:

For any connected plane graph G, each edge e is replaced by an odd chain tangle
Tke (Fig. 3a), and then two endpoints of the tangles are connected along the boundary
of each face. The resulting link, denoted by D(G), is called an odd link. It is also
called an odd polyhedral link when G is a polyhedral graph. Note that D(G) has
a consistent orientation based on the similar methods in Refs. [59–61]. In Fig. 3b,
we take a tetrahedral graph G for example. Tetrahedral link D(G) is generated by
replacing each edge e with T (1, 1; 1, 1). Hereafter we denote by V (G) its vertex set,
by E(G) its edge set, and by v(G), e(G) and f (G) the number of vertices, edges,
and faces of G respectively.
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Fig. 3 a An edge e replaced by Tke ; b an odd tetrahedral link D(G) derived from graph G

Fig. 4 Three link diagrams L+, L− and L0 differ locally at the site of a single crossing

Note. An even chain tangle consists of finitely many 2n-twist tangles. However, it
has orientation and other properties which are very different from an odd chain tangle.
For example, if we remove any loop in an even or odd chain tangle, this operation will
break the whole chain for the latter but the former will change into a ‘smaller’ even
chain tangle. For more details on even chain tangles, please refer to [62].

3 The HOMFLY polynomials of odd links

In this section, we establish the relationship between the HOMFLY polynomials of
odd links and the Qd -polynomial of a plane graph. Let G be any plane graph, and
D(G) be an odd polyhedral link obtained from G by using the method in Sect. 2. Let
us start with a quick introduction to two polynomial invariants.

Definition 3.1 [33] The HOMFLY polynomial H(L; v, z) ∈ Z[v, z] for an oriented
link L is defined by the following relationships:

(1) H(L; v, z) is invariant under ambient isotopy of L .
(2) If L is a trivial knot, then H(L; v, z) = 1.

(3) Suppose that three link diagrams L+, L− and L0 are different only on a local
region, as shown in Fig. 4, then v−1 H(L+; v, z)−vH(L−; v, z) = zH(L0; v, z).

The HOMFLY polynomial has the following properties:

(1) If L is the connected sum of L1 and L2, denoted by L1�L2, then

H(L) = H(L1)H(L2).
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(2) If L is the disjoint union of L1 and L2, denoted by L1 ∪ L2, then

H(L) = v−1 − v

z
H(L1)H(L2).

A double weighted graph is a graph G together with two functions α and β, where
α (β, respectively) map E(G) into some commutative ring with unity Rα(Rβ , respec-
tively). Let e be any edge of G, and let α(e) and β(e) is two weights of e.

Definition 3.2 [62] The Qd -polynomial Qd(G) = Qd(G; t, z) for a double weighted
graph G is defined by the following recursive rules:

1. Let En be n isolated vertices. Then

Qd(En) = tn .

2. Let α(e) = αe and β(e) = βe. Then
When e is a loop,

Qd(G) = (αez + βe)Qd(G − e);

Otherwise,

Qd(G)=αe Qd(G/e)+βe Qd(G − e).

In fact, the Qd -polynomial can be directly obtained by generalizing the dichromatic
polynomial of a weighted graph [60]. Hence it has an alternative definition as follows:

Qd(G) =
∑

F⊆E(G)

(
∏

e∈F

αe

)⎛

⎝
∏

e∈E(G)−F

βe

⎞

⎠ tk〈F〉zn〈F〉,

where k〈F〉 and n〈F〉 = e〈F〉−v〈F〉+k〈F〉 are the number of connected components
and the nullity of the spanning subgraph 〈F〉, induced by F , of G, respectively.

Lemma 3.3 Let Tk be an odd chain tangle, and T (2ni + 1, 2ni + 1) be the corre-
sponding 2-tangle in Tk for 1 ≤ i ≤ 2k. Then

H(T (2ni + 1, 2ni + 1)) = v4ni +2 v−1 − v

z
+ vz

v4ni +2 − 1

v2 − 1
. (1)

Proof We only need to show that the formula (1) holds for i = 1, 2, and the proof in
the case of i ≥ 3 is similar. Also, T (2n2 + 1, 2n2 + 1) has a reversed orientation to
T (2n1 + 1, 2n1 + 1) on each of its components. Hence we only need to prove that the
formula (1) holds for i = 1.

We proceed by induction on the crossing number of T = T (2n1 + 1, 2n1 + 1), and
assume firstly that n1 = 0. Since T has only positive crossings, by applying property
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Fig. 5 a Each diagram in the equation denotes its corresponding HOMFLY polynomial; b the link
De:T (0,0;2m+1,2m+1)(G) and the Denominator of T (2m + 1, 2m + 1) in it

(3) of the definition of the HOMFLY polynomial to a crossing of T , we obtain two
links T − and T 0 as shown in Fig. 5a. Hence we have

H(T ) = v2 H(T −) + vzH(T 0)

Note that T − is the disjoint union of two trivial knots and T 0 is a trivial knot. Hence

H(T −) = v−1 − v

z
and H(T 0) = 1.

Hence we obtain

H(T ) = v2 v−1 − v

z
+ vz.

Now assume that n1 ≥ 1. By applying property (3) of the definition of the HOMFLY
polynomial to a crossing of T , we obtain two links T (2n1 − 1, 2n1 + 1) and T

′
0. Note

that T
′
0 is a trivial knot. Hence we have

H(T ) = v2 H(T (2n1 − 1, 2n1 + 1)) + vzH(T
′
0)

= v2 H(T (2n1 − 1, 2n1 + 1)) + vz.

Also,H(T (2n1 − 1, 2n1 + 1)) = v2 H(T (2n1 − 1, 2n1 − 1)) + vz. Then we obtain

H(T ) = v2[v2 H(T (2n1 − 1, 2n1 − 1)) + vz] + vz

= v4 H(T (2n1 − 1, 2n1 − 1)) + v3z + vz.

By our inductive hypothesis, we have

H(T ) = v4
[
v4n1−2 v−1 − v

z
+ vz

v4n1−2 − 1

v2 − 1

]
+ v3z + vz.

The above shows that formula (1) holds for the case of i = 1, and hence for the
other cases. 
�
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For any nonnegative integer n, hereafter we define

d ′
n = v4n+2 + v2z2

(
v2n−1
v2−1

)2
,

d ′′
n = v4n+1z + 2v2n+1z v2n−1

v2−1
and

�n = v4n+2 v−1−v
z + vz v4n+2−1

v2−1
.

Lemma 3.4 Let e be an edge of G, which is replaced by an odd chain tangle T (2n+1,

2n + 1; 2m + 1, 2m + 1) for any nonnegative integers n and m. If e is a loop, then

H(D(G))=
[

d ′′
n d ′′

mv2 v−1 − v

z
+ d ′

n�m +d ′′
n d ′

m + d ′′
n d ′′

mvz

]
H(D(G − e)). (2)

Otherwise,

H(D(G))=d ′′
n d ′′

mv2 H(D(G/e))+(d ′
n�m + d ′′

n d ′
m +d ′′

n d ′′
mvz)H(D(G − e)). (3)

Proof First, we apply property (3) of the definition of the HOMFLY polynomial to a
crossing of the 2n + 1-twist tangle in T (2n + 1, 2n + 1; 2m + 1, 2m + 1), giving

H(D(G))=v2 H(De:T (2n−1,2n+1;2m+1,2m+1)(G))+vzH(De:T (0,2n+1;2m+1,2m+1)(G)).

Similarly

H(De:T (2n−1,2n+1;2m+1,2m+1)(G))

= v2 H(De:T (2n−3,2n+1;2m+1,2m+1)(G)) + vzH(De:T (0,2n+1;2m+1,2m+1)(G))

Then we obtain

H(D(G)) = v4 H(De:T (2n−3,2n+1;2m+1,2m+1)(G))

+(v3z + vz)H(De:T (0,2n+1;2m+1,2m+1)(G)).

By induction on the crossing number of the 2n + 1-twist tangle, we have

H(D(G)) = v2n H(De:T (1,2n+1;2m+1,2m+1)(G))

+vz
v2n − 1

v2 − 1
H(De:T (0,2n+1;2m+1,2m+1)(G)).

Similarly for the 2n + 1-twist tangle in T (1, 2n + 1; 2m + 1, 2m + 1), we have

H(De:(1,2n+1;2m+1,2m+1))(G)) = v2n H(De:T (1,1;2m+1,2m+1)(G))

+vz
v2n − 1

v2 − 1
H(De:T (1,0;2m+1,2m+1)(G)).
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From the above two equations, we obtain

H(D(G)) = v4n H(De:T (1,1;2m+1,2m+1)(G))+v2n+1z
v2n − 1

v2 − 1
H(De:T (1,0;2m+1,2m+1)(G))

+vz
v2n − 1

v2 − 1
H(De:T (0,2n+1;2m+1,2m+1)(G)).

Using the definition of the HOMELY polynomial, we have

H(De:T (1,1;2m+1,2m+1)(G)) = v2 H(De:T (0,0;2m+1,2m+1)(G))

+vzH(De:T (1,0;2m+1,2m+1)(G)).

Then

H(D(G)) = v4n+2 H(De:T (0,0;2m+1,2m+1)(G)) + vz
v2n − 1

v2 − 1
H(De:T (0,2n+1;2m+1,2m+1)(G))

+
(

v4n+1z + v2n+1z
v2n − 1

v2 − 1

)
H(De:T (1,0;2m+1,2m+1)(G)).

Repeatedly applying property (3) of the definition of the HOMFLY polynomial, we
have

H(De:T (0,2n+1;2m+1,2m+1)(G))=v2 H(De:T (0,2n−1;2m+1,2m+1)(G))+vzH(De:T (0,0;2m+1,2m+1)(G))

= v2[v2 H(De:T (0,2n−3;2m+1,2m+1)(G)) + vzH(De:T (0,0;2m+1,2m+1)(G))]
+vzH(De:T (0,0;2m+1,2m+1)(G))

= v4 H(De:T (0,2n−3;2m+1,2m+1)(G)) + (v3z + vz)H(De:T (0,0;2m+1,2m+1)(G))

· · · = v2n H(De:T (0,1;2m+1,2m+1)(G)) + vz
v2n − 1

v2 − 1
H(De:T (0,0;2m+1,2m+1)(G)).

Hence we have

H(D(G)) = v4n+2 H(De:T (0,0;2m+1,2m+1)(G))

+
(

v4n+1z + v2n+1z
v2n − 1

v2 − 1

)
H(De:T (1,0;2m+1,2m+1)(G)) + vz

v2n − 1

v2 − 1

·
[
v2n H(De:T (0,1;2m+1,2m+1)(G)) + vz

v2n − 1

v2 − 1
H(De:T (0,0;2m+1,2m+1)(G))

]

=
[
v4n+2 + v2z2

(
v2n − 1

v2 − 1

)2
]

H(De:T (0,0;2m+1,2m+1)(G))

+
(

v4n+1z + 2v2n+1z
v2n − 1

v2 − 1

)
H(De:T (1,0;2m+1,2m+1)(G)).

Similarly for the two 2m + 1-twist tangles in T (0, 0; 2m + 1, 2m + 1), we obtain

H(De:(1,0;2m+1,2m+1)(G)) = d ′
m H(De:T (1,0;0,0)(G)) + d ′′

m H(De:T (1,0;1,0)(G)).
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D(G-e)D (G)
e:T(1,0;1,0)

Fig. 6 Each diagram in the equation denotes its corresponding HOMFLY polynomial

Hence we have

H(D(G)) = d ′
n H(De:T (0,0;2m+1,2m+1)(G)) + d ′′

n d ′
m H(De:T (1,0;0,0)(G))

+d ′′
n d ′′

m H(De:T (1,0;1,0)(G)). (4)

Note that De:T (0,0;2m+1,2m+1)(G) can be described in Fig. 5b. Using the property
(1) of the HOMFLY polynomial and Lemma 3.3, we have

H(De:T (0,0;2m+1,2m+1)(G)) = H(T (2m + 1, 2m + 1)�D(G − e))

= H(T (2m + 1, 2m + 1))H(D(G − e))

= �m H(D(G − e))

and

H(De:T (1,0;0,0)(G)) = H(D(G − e)).

Hence we obtain

H(D(G))=d ′
n�m H(D(G − e)) + d ′′

n d ′
m H(D(G − e)) + d ′′

n d ′′
m H(De:T (1,0;1,0)(G)).

Applying property (3) of the definition of the HOMFLY polynomial to the 2-tangle
T (1, 0; 1, 0), we obtain two links D′ and D(G − e) as shown in Fig. 6. Hence

H(D(G)) = (d ′
n�m + d ′′

n d ′
m)H(D(G − e)) + d ′′

n d ′′
m(v2 H(D′) + vzH(D(G − e)))

= (d ′
n�m + d ′′

n d ′
m + d ′′

n d ′′
mvz)H(D(G − e)) + d ′′

n d ′′
mv2 H(D′).

If e is a loop, then

H(D′) = v−1 − v

z
H(D(G − e)).

Hence we have

H(D(G)) =
[
d ′′

n d ′′
mv2
(

v−1−v
z

)
+ d ′

n�m + d ′′
n d ′

m + d ′′
n d ′′

mvz
]

H(D(G − e)).

If e is not a loop, then

H(D′) = H(D(G/e)).

123



J Math Chem (2013) 51:1310–1328 1319

Hence we have

H(D(G)) = d ′′
n d ′′

mv2 H(D(G/e)) + (d ′
n�m + d ′′

n d ′
m + d ′′

n d ′′
mvz)H(D(G − e)).


�
For any two nonnegative integers n and m, we can define

E ′(n, m) = d ′′
n d ′′

mv2 and E ′′(n, m) = d ′
n�m + d ′′

n d ′
m + d ′′

n d ′′
mvz.

Theorem 3.5 Let e be an edge of G, which is replaced by an odd chain tangle Tke =
(2n1 + 1, 2n1 + 1; . . . ; 2n2ke + 1, 2n2ke + 1) for any nonnegative integer ni (1 ≤ i ≤
2ke ≥ 2).

If e is a loop, then

H(D(G)) =
⎡

⎣
∑

s=1,3,...,2ke−1

∏

i=1,3,...,s−2

E ′(ni , ni+1)E ′′(ns, ns+1)

2ke∏

i=s+2

�ni

+
∏

i=1,3,...,2ke−1

E ′(ni , ni+1)
v−1 − v

z

⎤

⎦ H(D(G − e)). (5)

Otherwise,

H(D(G)) =
∑

s=1,3,...,2ke−1

∏

i=1,3,...,s−2

E ′(ni , ni+1)E ′′(ns , ns+1)

2ke∏

i=s+2

�ni H(D(G−e))

+
∏

i=1,3,...,2ke−1

E ′(ni , ni+1)H(D(G/e)). (6)

Proof We proceed by induction on ke. Note that the case of ke = 1 has been shown
in Lemma 3.4. Now we suppose that ke ≥ 2. Using the above formula (4), we have

H(D(G)) = d ′
n1

H(De:T (0,0;2n2+1,2n2+1;...)(G)) + d ′′
n1

d ′
n2

H(De:T (1,0;0,0;2n3+1,2n3+1;...)(G))

+d ′′
n1

d ′′
n2

H(De:T (1,0;1,0;2n3+1,2n3+1;...)(G)).

Note that

H(De:T (0,0;2n2+1,2n2+1;...)(G)) = H(D(G − e)�T (2n2 + 1, 2n2 + 1)� . . . �

T (2n2ke + 1, 2n2ke + 1)).

123



1320 J Math Chem (2013) 51:1310–1328

Hence using property (1) of the HOMFLY polynomial and Lemma 3.3, we have

H(De:T (0,0;2n2+1,2n2+1;...)(G)) =
2ke∏

i=2

H(T (2ni + 1, 2ni + 1))H(D(G − e))

=
2ke∏

i=2

�ni H(D(G − e))

=�n2 H(De:T (1,0;0,0;2n3+1,2n3+1;...)(G)).

Then

H(D(G)) = d ′
n1

2ke∏

i=2

�ni H(D(G − e)) + d ′′
n1

d ′
n2

2ke∏

i=3

�ni H(D(G − e))

+d ′′
n1

d ′′
n2

H(De:T (1,0;1,0;2n3+1,2n3+1;...)(G)).

Using property (3) of the definition of the HOMFLY polynomial, we have

H(De:T (1,0;1,0;2n3+1,2n3+1;...)(G)) = v2 H(De:T (2n3+1,2n3+1;...)(G))

+vzH(De:T (0,0;1,0;2n3+1,2n3+1;...)(G)).

Hence we obtain

H(D(G)) =
(

d ′
n1

2ke∏

i=2

�ni + d ′′
n1

d ′
n2

2ke∏

i=3

�ni

)
H(D(G − e))

+d ′′
n1

d ′′
n2

(v2 H(De:T (2n3+1,2n3+1;...)(G)) + vzH(De:T (0,0;1,0;2n3+1,2n3+1;...)(G))).

Since

H(De:T (0,0;1,0;2n3+1,2n3+1;...)(G)) =
2ke∏

i=3

�ni H(D(G − e)),

we have

H(D(G)) = d ′′
n1

d ′′
n2

v2 H(De:T (2n3+1,2n3+1;...)(G))

+
(

d ′
n1

2ke∏

i=2

�ni + d ′′
n1

d ′
n2

2ke∏

i=3

�ni + d ′′
n1

d ′′
n2

vz
2ke∏

i=3

�ni

)
H(D(G − e))

= E ′(n1, n2)H(De:T (2n3+1,2n3+1;...)(G))+E ′′(n1, n2)

2ke∏

i=3

�ni H(D(G−e)).
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If e is a loop, by our inductive hypothesis, we have

H(De:T (2n3+1,2n3+1;...)(G)) =
⎛

⎝
∏

i=3,5,...,2ke−1

E ′(ni , ni+1) · v−1 − v

z

+
∑

s=3,5,...,2ke−1

∏

i=3,5,...,s−2

E ′(ni , ni+1) · E ′′(ns, ns+1)

2ke∏

i=s+2

�ni

⎞

⎠ H(D(G − e)).

Hence we have

H(D(G)) = E ′′(n1, n2)

2ke∏

i=3

�ni H(D(G − e))

+E ′(n1, n2)

⎛

⎝
∏

i=3,5,...,2ke−1

E ′(ni , ni+1) · v−1 − v

z

+
∑

s=3,5,...,2ke−1

∏

i=3,5,...,s−2

E ′(ni , ni+1) · E ′′(ns , ns+1)

2ke∏

i=s+2

�ni

⎞

⎠ H(D(G−e)).

The formula (5) can be directly obtained from the above equation.
If e is not a loop, by our inductive hypothesis,

H(De:T (2n3+1,2n3+1;...)(G))

=
∏

i=3,5,...,2ke−1

E ′(ni , ni+1)H(D(G/e))

+
∑

s=3,5,...,2ke−1

∏

i=3,5,...,s−2

E ′(ni , ni+1)E ′′(ns, ns+1)

2ke∏

i=s+2

�ni H(D(G − e)).

Hence we have

H(D(G)) = E ′′(n1, n2)

2ke∏

i=3

�ni H(D(G − e))

+E ′(n1, n2)

⎡

⎣
∏

i=3,5,...,2ke−1

E ′(ni , ni+1)H(D(G/e))

+
∑

s=3,5,...,2ke−1

∏

i=3,5,...,s−2

E ′(ni , ni+1) · E ′′(ns , ns+1)

2ke∏

i=s+2

�ni H(D(G − e))

⎤

⎦.

The formula (6) can be directly obtained from the above equation. 
�
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In graph G, for each edge e replaced by an odd chain tangle Tke , by defining

α(e) =
∏

i=1,3,...,2ke−1

E ′(ni , ni+1) and

β(e) =
∑

s=1,3,...,2ke−1

∏

i=1,3,...,s−2

E ′(ni , ni+1)E ′′(ns, ns+1)

2ke∏

i=s+2

�ni ,

we obtain two functions α and β from E(G) to the polynomial ring Z[v, z]. Now by
comparing Theorem 3.5 with the definition of Qd -polynomial, we obtain the following
theorem.

Theorem 3.6 Let G be the double weighted graph with two functions α and β as
defined above. Then

H(D(G)) = z

v−1 − v
· Qd(G; v−1 − v

z
,
v−1 − v

z
).

According to the above theorem and the definition of the Qw-polynomial, the
HOMFLY polynomials of odd links can be given as a sum over all subsets of E(G)

in the following manner.

Theorem 3.7 Let G be defined as in Theorem 3.6. Then

H(D(G)) =
∑

F⊆E(G)

(
∏

e∈F

αe

)
(
∏

e∈E(G)−F

βe)

(
v−1 − v

z

)k〈F〉+n〈F〉−1

.

4 Applications

In this section, the spansv of the HOMFLY polynomials, the bound of the braid indices
and the genera of odd polyhedral links are all calculated by using Theorem 3.7.

4.1 Spanv of the HOMFLY polynomial

Let maxdegv f and mindegv f denote the maximum degree and minimum degree of
v in the multi-variable polynomial f taken over terms with non-zero coefficients,
respectively. We define spanv f = maxdegv f −mindegv f , and begin with some simple
lemmas.

Lemma 4.1 Let d ′
n, d ′′

n and �n be defined as in the Sect. 3. Then

(1) maxdegv d ′
n = 4n + 2 and mindegv d ′

n = 2.

(2) maxdegv d ′′
n = 4n + 1 and mindegv d ′′

n = 2n + 1.

(3) maxdegv �n = 4n + 3 and mindegv �n = 1.
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The following theorem can be easily obtained from Lemma 4.1.

Lemma 4.2 Let E ′(n, m) and E ′′(n, m) be defined as in the Sect. 3. Then

(1) maxdegv E ′(n, m) = 4n + 4m + 4 and mindegv E ′(n, m) = 2n + 2m + 4.

(2) maxdegv E ′′(n, m) = 4n + 4m + 5 and mindegv E ′′(n, m) = 3.

Theorem 4.3 Let G be any connected plane graph and D(G) be the odd link derived
from G using the method in Sect. 2. For each edge e of G, it is replaced by an odd
chain diagram Tke = T (2n1 +1, 2n1 +1; 2n2 +1, 2n2 +1; . . . ; 2n2ke +1, 2n2ke +1)

for any nonnegative integer ni (1 ≤ i ≤ 2ke ≥ 2). Then

maxdegv H(D(G)) =
∑

e∈E(G)

[ 2ke∑

i=1

(4ni + 3) − 1

]
+ v(G) − 1 (7)

and mindegv H(D(G)) =
∑

e∈E(G)

(2ke + 1) − v(G) + 1. (8)

Proof By using Theorem 3.7, we have

H(D(G)) =
∑

F⊆E(G)

(
∏

e∈F

αe

)⎛

⎝
∏

e∈E(G)−F

βe

⎞

⎠
(

v−1 − v

z

)k〈F〉+n〈F〉−1

.

For any subset F of E(G), by using Lemma 4.2, we have

maxdegv αe =
∑

i=1,3,...,2ke−1

(4ni + 4ni+1 + 4) =
2ke∑

i=1

(4ni + 2) and

mindegv αe =
∑

i=1,3,...,2ke−1

(2ni + 2ni+1 + 4) =
2ke∑

i=1

(2ni + 2).

Similarly, we have

mindegv βe = mindegv

{
E ′′(n1, n2)

2ke∏

i=3

�ni

}
= 2ke + 1 and

maxdegv βe = maxdegv

{
E ′′(n1, n2)

2ke∏

i=3

�ni

}
=

2ke∑

i=1

(4ni + 3) − 1.
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Suppose that F is nonempty and |F | is the number of edges in F. Then

maxdegv

⎧
⎨

⎩
∏

e∈F

αe

∏

e∈E(G)−F

βe ·
(

v−1 − v

z

)k〈F〉+n〈F〉−1
⎫
⎬

⎭

=
∑

e∈F

maxdegv αe +
∑

e∈E(G)−F

maxdegv βe + k〈F〉 + n〈F〉 − 1

=
∑

e∈F

2ke∑

i=1

(4ni + 2) +
∑

e∈E(G)−F

[ 2ke∑

i=1

(4ni + 3) − 1

]
+ 2k〈F〉 + |F | − v〈F〉 − 1

=
∑

e∈E(G)

[ 2ke∑

i=1

(4ni + 3) − 1

]
−
∑

e∈F

2ke + 2k〈F〉 + 2|F | − v〈F〉 − 1

=
∑

e∈E(G)

[ 2ke∑

i=1

(4ni + 3) − 1

]
−
∑

e∈F

(2ke − 2) + 2k〈F〉 − v〈F〉 − 1.

Also, k〈F〉 ≤ v〈F〉 − 1 and
∑
e∈F

(2ke − 2) ≥ 0, we have

maxdegv

⎧
⎨

⎩
∏

e∈F

αe

∏

e∈E(G)−F

βe(
v−1 − v

z
)k〈F〉+n〈F〉−1

⎫
⎬

⎭

≤
∑

e∈E(G)

[ 2ke∑

i=1

(4ni + 3) − 1

]
+ 2(v〈F〉 − 1) − v〈F〉 − 1

<
∑

e∈E(G)

[ 2ke∑

i=1

(4ni + 3) − 1

]
+ v〈G〉 − 1

= maxdegv

⎧
⎨

⎩
∏

e∈E(G)

βe

(
v−1 − v

z

)v〈G〉−1
⎫
⎬

⎭ .

Similarly, we have

mindegv

⎧
⎨

⎩
∏

e∈F

αe

∏

e∈E(G)−F

βe

(
v−1 − v

z

)k〈F〉+n〈F〉−1
⎫
⎬

⎭

=
∑

e∈F

mindegv αe +
∑

e∈E(G)−F

mindegv βe − k〈F〉 − n〈F〉 + 1

=
∑

e∈F

2ke∑

i=1

(2ni + 2) +
∑

e∈E(G)−F

(2ke + 1) − 2k〈F〉 − |F | + v〈F〉 + 1
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≥
∑

e∈F

2ke∑

i=1

(2ni + 2) +
∑

e∈E(G)−F

(2ke + 1) − 2(v〈F〉 − 1) − |F | + v〈F〉 + 1.

Also,
∑2ke

i=1(2ni + 1) ≥ 2, hence we obtain

mindegv

⎧
⎨

⎩
∏

e∈F

αe

∏

e∈E(G)−F

βe(
v−1 − v

z
)k〈F〉+n〈F〉−1

⎫
⎬

⎭

≥
∑

e∈F

(2ke + 2) +
∑

e∈E(G)−F

(2ke + 1) − 2(v〈F〉 − 1) − |F | + v〈F〉 + 1

≥
∑

e∈E(G)

(2ke + 1) − v〈F〉 + 3

>
∑

e∈E(G)

(2ke + 1) − v〈G〉 + 1

= mindegv

⎧
⎨

⎩
∏

e∈E(G)

βe

(
v−1 − v

z

)v〈G〉−1
⎫
⎬

⎭ .


�
The following Theorem can be proven by using Theorem 4.3 and Euler’s formula.

Theorem 4.4 spanv H(D(G)) = ∑
e∈E(G)

2ke∑
i=1

(4ni + 2) − 2( f − 1).

4.2 Braid index

The braid index b(L) of a link L is the minimal number n such that L can be represented
as a closed n-string braid. In the following Theorem 4.5, the lower bound of b(L),

known as the MFW inequality, was shown independently by Franks and Williams [50]
and Morton [51], and the upper bound was given by Ohyama [52] in 1993.

Theorem 4.5

1

2
spanv H(L) + 1 ≤ b(L) ≤ 1

2
c(L) + 1, (9)

where c(L) is the crossing number of a link L.

Theorem 4.6 Let G and D(G) be defined as in Theorem 4.3. Then

∑

e∈E(G)

2ke∑

i=1

(2ni + 1) − ( f − 2) ≤ b(D(G)) ≤
∑

e∈E(G)

2ke∑

i=1

(2ni + 1) + 1. (10)
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Proof Let c(Tke ) and c(D(G)) be the crossing number of Tke and D(G), respectively.
Note that each Tke is an alternating tangle, hence D(G) is an alternating link by the
construction method in Sect. 2. Thus

c(Tke ) =
2ke∑

i=1

(4ni + 2) and c(D(G)) =
∑

e∈E(G)

2ke∑

i=1

(4ni + 2).

Formula (10) can be obtained by using the Theorems 4.4 and 4.5. 
�

4.3 Genus

The genus of an oriented link L is the minimum genus of any connected orientable sur-
face having L as its boundary. The following theorem follows directly from Corollary
4.1 and Remark in Ref. [53].

Theorem 4.7 Let L be a alternating link having a positive diagram, then

g(L) = 1

2
(mindegv H(L) − μ(L) + 1).

Theorem 4.8 Let G be any connected plane graph and D(G) be an odd link obtained
from G using the method in Sect. 2. Then

g(D(G)) = f (G) − 1.

Proof Let e be any edge of G, which is replaced by an odd chain tangle Tke . Let μe

be the number of the loops in Tke , μD(G) be the component number of D(G). Clearly,
each vertex v of G corresponds to a component of D(G). Hence we have the following
equations:

μe = 2ke − 1 and μe(D(G)) =
∑

e∈E(G)

μe + v(G) =
∑

e∈E(G)

(2ke − 1) + v(G).

Note that each Tke only has positive crossings, hence D(G) itself is a positive
alternating link diagram. By Theorem 4.7 we have

2g(D(G)) =
∑

e∈E(G)

(2ke + 1) − v(G) + 1 −
⎡

⎣
∑

e∈E(G)

(2ke − 1) + v(G)

⎤

⎦+ 1

= 2e(G) − 2v(G) + 2

= 2 f (G) − 2.


�
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Example 1 Let G be a tetrahedral link as shown in Fig. 3b. Since f (G) = 4 and
Tke = T (1, 1; 1, 1), we have

spanv H(D(G)) = 6(2 + 2) − 2(4 − 1) = 18,

10 ≤ b(D(G)) ≤ 6 · (1 + 1) + 1 = 13 and

g(D(G)) = 4 − 1 = 3.

5 Conclusion

In this paper, odd chain tangles have been designed to generate odd polyhedral links
with two DNA duplexes. Each of them consists of finitely many 2n + 1-twist tangles,
with each strand oriented antiparallel to each other. This orientation coincides with
the natural direction of DNA strands. Also, we note that removing any loop of an odd
chain tangle will break the whole chain, which is essentially different from even chain
tangles [62].

Furthermore, the HOMFLY polynomials of odd links have been given by an explicit
formula in terms of the Qd -polynomial of the associated polyhedral graph G. This
formula enables us to obtain the spansv of the HOMFLY polynomials, the upper and
lower bounds on the braid indices and the genera of these odd links. Our results show
that the three indices are not only related closely to the odd chain tangles used but
also to the face number of G. Also, we observe that these odd links are embedded
on the surface with genus n > 0. These facts imply that odd polyhedral links have
more complex topological structure than even polyhedral links [38–40,62]. Our work
provides novel insights into the synthesis and control of the molecules with remarkably
complex topology.
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